2023-24 MATH2048: Honours Linear Algebra II Homework 6 Answer

Due: 2023-10-30 (Monday) 23:59

For the following homework questions, please give reasons in your solutions. Scan your solutions and submit it via the Blackboard system before due date.

1. Let $V=P_{1}(\mathbb{R})$ and $W=\mathbb{R}^{2}$ with respective standard ordered bases β and γ. Define $T: V \rightarrow W$ by

$$
T(p(x))=\left(p(0)-2 p(1), p(0)+p^{\prime}(0)\right),
$$

where $p^{\prime}(x)$ is the derivative of $p(x)$.
(a) For $f \in W^{*}$ defined by $f(a, b)=a-2 b$, compute $T^{*}(f)$.
(b) Compute $[T]_{\beta}^{\gamma}$ and $\left[T^{*}\right]_{\gamma^{*}}^{\beta^{*}}$ independently.

Solution.

(a)

$$
\begin{aligned}
T^{*}(f)(p(x)) & =f \circ T(p(x)) \\
& =f(T(p(x)) \\
& =f\left(p(0)-2 p(1), p(0)+p^{\prime}(0)\right) \\
& =p(0)-2 p(1)-2\left(p(0)+p^{\prime}(0)\right) \\
& =-p(0)-2 p(1)-2 p^{\prime}(0)
\end{aligned}
$$

(b) Let $\beta=\{1, x\}$ and $\gamma=\left\{e_{1}, e_{2}\right\}$. And $\beta^{*}=\left\{f_{1}, f_{2}\right\}, \gamma^{*}=\left\{g_{1}, g_{2}\right\}$ be the dual bases of β and γ.

$$
[T]_{\beta}^{\gamma}=\left[\begin{array}{cc}
-1 & -2 \\
1 & 1
\end{array}\right]
$$

$$
\begin{aligned}
& \left\{\begin{array}{l}
f_{1}(1)=1 \\
f_{1}(x)=0
\end{array} \Longrightarrow f_{1}(a+b x)=a,\left\{\begin{array}{l}
f_{2}(1)=0 \\
f_{2}(x)=1
\end{array} \Longrightarrow f_{1}(a+b x)=b\right.\right. \\
& \left\{\begin{array}{l}
g_{1}\left(e_{1}\right)=1 \\
g_{1}\left(e_{2}\right)=0
\end{array} \Longrightarrow g_{1}((a, b))=a,\left\{\begin{array}{l}
g_{2}\left(e_{1}\right)=0 \\
g_{2}\left(e_{2}\right)=1
\end{array} \Longrightarrow g_{2}((a, b))=b\right.\right.
\end{aligned}
$$

$$
\begin{aligned}
T^{*}\left(g_{1}\right)(a+b x) & =g_{1} \circ T(a+b x) \\
& =g_{1}((-a-2 b, a+b)) \\
& =-a-2 b \\
& =-f_{1}(a+b x)-2 f_{2}(a+b x) \text { for any } a+b x \in P_{1}(\mathbb{R})
\end{aligned}
$$

So $\left[T^{*}\left(g_{1}\right)\right]_{\beta^{*}}=\binom{-1}{-2}$

$$
\begin{aligned}
T^{*}\left(g_{2}\right)(a+b x) & =g_{2} \circ T(a+b x) \\
& =g_{2}((-a-2 b, a+b)) \\
& =a+b \\
& =f_{1}(a+b x)+f_{2}(a+b x) \text { for any } a+b x \in P_{1}(\mathbb{R})
\end{aligned}
$$

So $\left[T^{*}\left(g_{2}\right)\right]_{\beta^{*}}=\binom{1}{1}$

$$
\left[T^{*}\right]_{\gamma^{*}}^{\beta^{*}}=\left[\begin{array}{ll}
-1 & 1 \\
-2 & 1
\end{array}\right]
$$

2. Let $V=P_{n}(F)$, and let $c_{0}, c_{1}, \ldots, c_{n}$ be distinct scalars in F.
(a) For $0 \leq i \leq n$, define $f_{i} \in V^{*}$ by $f_{i}(p(x))=p\left(c_{i}\right)$. Prove that $\left\{f_{0}, f_{1}, \ldots, f_{n}\right\}$ is a basis for V^{*}.
(b) Show that there exist unique polynomials $p_{0}(x), p_{1}(x), \ldots, p_{n}(x)$ such that $p_{i}\left(c_{j}\right)=$ $\delta_{i j}$ for $0 \leq i \leq n$. (Hint: Lagrange Polynomials)
(c) For any scalars $a_{0}, a_{1}, \ldots, a_{n}$ (not necessarily distinct), find the polynomial $q(x)$ of degree at most n such that $q\left(c_{i}\right)=a_{i}$ for $0 \leq i \leq n$ and show that $q(x)$ is unique.

Solution.

(a) Consider $\sum_{i=0}^{n} a_{i} f_{i}=0$. Let $p_{i}(x)=\prod_{j=0, j \neq i}^{n}\left(x-c_{j}\right)$, then $p_{i}\left(c_{j}\right)=0$ iff $i=j$. $\sum_{i=0}^{n} a_{i} f_{i}\left(p_{j}\right)=0 \Longrightarrow \sum_{i=0}^{n} a_{i} p_{j}\left(c_{i}\right)=0 \Longrightarrow a_{i} p_{j}\left(c_{i}\right)=0 \Longrightarrow a_{j}=0$

Therefore $\left\{f_{0}, \ldots, f_{n}\right\}$ is linearly independent in V.
Since $\left|\left\{f_{0}, \ldots, f_{n}\right\}\right|=n+1=\operatorname{dim}(V),\left\{f_{0}, \ldots, f_{n}\right\}$ is a basis for V.
(b) Let $\left\{\hat{p}_{0}, \ldots, \hat{p}_{n}\right\} \subset V^{*}$ be the dual basis of $\left\{f_{0}, \ldots, f_{n}\right\}$.

Then $\delta_{i j}=\hat{p}_{i}\left(f_{j}\right)=f_{j}\left(p_{i}\right)=p_{i}\left(c_{j}\right)$.
The Lagrange Polynomial $p_{i}(x)=\frac{\prod_{j=0, j \neq i}^{n}\left(x-c_{j}\right)}{\prod_{j=0,0 j i}^{n}\left(c_{i}-c_{j}\right)}$ satisfies $p_{i}\left(c_{j}\right)=\delta_{i j}$.
If $p_{i}\left(c_{j}\right)=q_{i}\left(c_{j}\right)=\delta_{i j}$ for some polynomial p_{i} and q_{i}, then $\left(p_{i}-q_{i}\right)\left(c_{j}\right)=$ $0, \forall j=1, \ldots, n$. That means the polynomial $p_{i}-q_{i}$ has $n+1$ distinct zeros. Thus $p_{i}-q_{i}=0$. Therefore such $\left\{p_{i}\right\}_{i=0}^{n}$ is unique.
(c) Since $\left\{p_{0}, \ldots, p_{n}\right\}$ is a basis for $P_{n}(F)$, for any $q \in P_{n}(F), q$ can be uniquely represented by $q(x)=\sum_{i=0}^{n} a_{i} p_{i}(x)$ and $q\left(c_{i}\right)=\sum_{j=0}^{n} a_{j} p_{j}\left(c_{i}\right)=\sum_{j=0}^{n} a_{j} \delta_{i j}=$ a_{i}.
3. Let $A, B \in M_{n \times n}(\mathbb{C})$.
(a) Prove that if B is invertible, then there exists a scalar $c \in \mathbb{C}$ such that $A+c B$ is not invertible. Hint: Examine $\operatorname{det}(A+c B)$.
(b) Find nonzero 2×2 matrices A and B such that both A and $A+c B$ are invertible for all $c \in \mathbb{C}$.

Solution.

(a) $\operatorname{det}(A+c B)=\operatorname{det}\left(B\left(B^{-1} A+c I\right)\right)=\operatorname{det}(B) \operatorname{det}\left(B^{-1} A+c I\right)=\operatorname{det}(B) f_{B^{-1} A}(-c)$. Since $f_{B^{-1} A}(t)$, the characteristic polynomial of $B^{-1} A$, splits over \mathbb{C}, there exists $c \in \mathbb{C}$ such that $f_{B^{-1} A}(-c)=0$, which implies $\operatorname{det}(A+c B)=0$ and thus $A+c B$ is not invertible.
(b) $A=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right) B=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$ Then $\operatorname{det}(A+c B)=1$ for all $c \in \mathbb{C}$
4. (a) Let T be a linear operator on a vector space V over the field F, and let $g(t)$ be a polynomial with coefficients from F. Prove that if x is an eigenvector of T with corresponding eigenvalue λ, then $g(T)(x)=g(\lambda) x$. That is, x is an eigenvector of $g(T)$ with corresponding eigenvalue $g(\lambda)$.
(b) Use (a) to prove that if $f(t)$ is the characteristic polynomial of a diagonalizable linear operator T, then $f(T)=T_{0}$, the zero operator. (Remark: This result does not depend on the diagonalizability of T.)

Solution.

(a) Let $g(t)=\sum_{i=0}^{n} a_{i} t^{i}$, then $g(T)=\sum_{i=0}^{n} a_{i} T^{i}$.

If $T(x)=\lambda x$, then

$$
g(T)(x)=\sum_{i=0}^{n} a_{i} T^{i}(x)=\sum_{i=0}^{n} a_{i}\left(\lambda^{i} x\right)=\left(\sum_{i=0}^{n} a_{i} \lambda^{i}\right) x=g(\lambda)(x)
$$

(b) T is diagonalizable, then there exists β a basis consisting of eignevectors of T.

Let $\beta=\left\{v_{1}, \ldots, v_{n}\right\}$ and $T\left(v_{i}\right)=\lambda_{i} v_{i}$. Then $f\left(\lambda_{i}\right)=0$ since λ_{i} is the eigenvalue of T.

By (a), one has $f(T)\left(v_{i}\right)=f\left(\lambda_{i}\right) v_{i}=0 v_{i}=0$ for $i=1, \ldots, n$. Thus $f(T)=T_{0}$.
5. Let $A \in M_{n \times n}(F)$. Recall from $\S 5.1$ Q14 that A and A^{t} have the same characteristic polynomial and hence share the same eigenvalues with the same multiplicities. For any eigenvalue λ of A and A^{t}, let E_{λ} and E_{λ}^{\prime} denote the corresponding eigenspaces for A and A^{t}, respectively.
(a) Show by way of example that for a given common eigenvalue, these two eigenspaces need not be the same.
(b) Prove that for any eigenvalue $\lambda, \operatorname{dim}\left(E_{\lambda}\right)=\operatorname{dim}\left(E_{\lambda}^{\prime}\right)$.
(c) Prove that if A is diagonalizable, then A^{t} is also diagonalizable.

Solution.

(a) Let $A=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$, then $f_{A}(t)=f_{A^{t}}(t)=t^{2} . \lambda=0$ is the only eigenvalue of A and A^{t}. The algebraic multiplicity $\mu_{A}(0)=\mu_{A^{t}}(0)=2$.
$E_{\lambda}=N(A-0 I)=\left\{(x, y) \in \mathbb{R}^{2} \mid y=0\right\}=\operatorname{span}(\{(1,0)\})$
$E_{\lambda}^{\prime}=N\left(A^{t}-0 I\right)=\left\{(x, y) \in \mathbb{R}^{2} \mid x=0\right\}=\operatorname{span}(\{(0,1)\})$
So $E_{\lambda} \neq E_{\lambda}^{\prime}$
(b)

$$
\begin{aligned}
\operatorname{dim}\left(E_{\lambda}\right) & =\operatorname{dim}(N(A-\lambda I)) \\
& =n-\operatorname{rank}(A-\lambda I) \\
& =n-\operatorname{rank}\left((A-\lambda I)^{t}\right) \\
& =\operatorname{dim}\left(N\left(A^{t}-\lambda I\right)\right) \\
& =\operatorname{dim}\left(E_{\lambda}^{\prime}\right)
\end{aligned}
$$

(c) If A is diagonalizable, there exists $\lambda_{1}, \ldots \lambda_{r}$ such that $E_{\lambda_{1}} \oplus \ldots E_{\lambda_{r}}=F^{n}$. That is, $\operatorname{dim}\left(E_{\lambda_{1}}\right)+\ldots+\operatorname{dim}\left(E_{\lambda_{r}}\right)=n$. By $(\mathrm{b}), \operatorname{dim}\left(E_{\lambda_{1}}^{\prime}\right)+\ldots+\operatorname{dim}\left(E_{\lambda_{r}}^{\prime}\right)=n$. Then $E_{\lambda_{1}}^{\prime} \oplus \ldots E_{\lambda_{r}}^{\prime}=F^{n}$ and thus A^{t} is diagonalizable.

