
2023-24 MATH2048: Honours Linear Algebra II

Homework 6 Answer

Due: 2023-10-30 (Monday) 23:59

For the following homework questions, please give reasons in your solutions.

Scan your solutions and submit it via the Blackboard system before due date.

1. Let V = P1(R) and W = R2 with respective standard ordered bases β and γ. Define

T : V →W by

T (p(x)) = (p(0)− 2p(1), p(0) + p′(0)),

where p′(x) is the derivative of p(x).

(a) For f ∈W ∗ defined by f(a, b) = a− 2b, compute T ∗(f).

(b) Compute [T ]γβ and [T ∗]β
∗

γ∗ independently.

Solution.

(a)

T ∗(f)(p(x)) = f ◦ T (p(x))

= f(T (p(x))

= f(p(0)− 2p(1), p(0) + p′(0))

= p(0)− 2p(1)− 2(p(0) + p′(0))

= −p(0)− 2p(1)− 2p′(0)

(b) Let β = {1, x} and γ = {e1, e2}. And β∗ = {f1, f2}, γ∗ = {g1, g2} be the dual

bases of β and γ.

[T ]γβ =

−1 −2
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f1(1) = 1

f1(x) = 0
=⇒ f1(a+ bx) = a,


f2(1) = 0

f2(x) = 1
=⇒ f1(a+ bx) = b


g1(e1) = 1

g1(e2) = 0
=⇒ g1((a, b)) = a,


g2(e1) = 0

g2(e2) = 1
=⇒ g2((a, b)) = b

T ∗(g1)(a+ bx) = g1 ◦ T (a+ bx)

= g1((−a− 2b, a+ b))

= −a− 2b

= −f1(a+ bx)− 2f2(a+ bx) for any a+ bx ∈ P1(R)

So [T ∗(g1)]β∗ =

−1

−2



T ∗(g2)(a+ bx) = g2 ◦ T (a+ bx)

= g2((−a− 2b, a+ b))

= a+ b

= f1(a+ bx) + f2(a+ bx) for any a+ bx ∈ P1(R)

So [T ∗(g2)]β∗ =

1

1


[T ∗]β

∗

γ∗ =

−1 1

−2 1


2. Let V = Pn(F ), and let c0, c1, . . . , cn be distinct scalars in F .

(a) For 0 ≤ i ≤ n, define fi ∈ V ∗ by fi(p(x)) = p(ci). Prove that {f0, f1, . . . , fn} is

a basis for V ∗.

(b) Show that there exist unique polynomials p0(x), p1(x), . . . , pn(x) such that pi(cj) =

δij for 0 ≤ i ≤ n. (Hint: Lagrange Polynomials)

(c) For any scalars a0, a1, . . . , an (not necessarily distinct), find the polynomial q(x)

of degree at most n such that q(ci) = ai for 0 ≤ i ≤ n and show that q(x) is

unique.
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Solution.

(a) Consider
∑n

i=0 aifi = 0. Let pi(x) =
∏n
j=0,j 6=i(x− cj), then pi(cj) = 0 iff i = j.∑n

i=0 aifi(pj) = 0 =⇒
∑n

i=0 aipj(ci) = 0 =⇒ aipj(ci) = 0 =⇒ aj = 0

Therefore {f0, ..., fn} is linearly independent in V .

Since |{f0, ..., fn}| = n+ 1 = dim(V ), {f0, ..., fn} is a basis for V .

(b) Let {p̂0, ..., p̂n} ⊂ V ∗ be the dual basis of {f0, ..., fn}.

Then δij = p̂i(fj) = fj(pi) = pi(cj).

The Lagrange Polynomial pi(x) =
∏n

j=0,j 6=i(x−cj)∏n
j=0,j 6=i(ci−cj)

satisfies pi(cj) = δij .

If pi(cj) = qi(cj) = δij for some polynomial pi and qi, then (pi − qi)(cj) =

0, ∀j = 1, ..., n. That means the polynomial pi − qi has n + 1 distinct zeros.

Thus pi − qi = 0. Therefore such {pi}ni=0 is unique.

(c) Since {p0, ..., pn} is a basis for Pn(F ), for any q ∈ Pn(F ), q can be uniquely

represented by q(x) =
∑n

i=0 aipi(x) and q(ci) =
∑n

j=0 ajpj(ci) =
∑n

j=0 ajδij =

ai.

3. Let A,B ∈Mn×n(C).

(a) Prove that if B is invertible, then there exists a scalar c ∈ C such that A+ cB

is not invertible. Hint: Examine det(A+ cB).

(b) Find nonzero 2×2 matrices A and B such that both A and A+cB are invertible

for all c ∈ C.

Solution.

(a) det(A+cB) = det(B(B−1A+cI)) = det(B) det(B−1A+cI) = det(B)fB−1A(−c).

Since fB−1A(t), the characteristic polynomial of B−1A, splits over C, there

exists c ∈ C such that fB−1A(−c) = 0, which implies det(A+ cB) = 0 and thus

A+ cB is not invertible.

(b) A =

1 0

0 1

 B =

0 0

1 0

 Then det(A+ cB) = 1 for all c ∈ C

4. (a) Let T be a linear operator on a vector space V over the field F , and let g(t)

be a polynomial with coefficients from F . Prove that if x is an eigenvector of

T with corresponding eigenvalue λ, then g(T )(x) = g(λ)x. That is, x is an

eigenvector of g(T ) with corresponding eigenvalue g(λ).
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(b) Use (a) to prove that if f(t) is the characteristic polynomial of a diagonalizable

linear operator T , then f(T ) = T0, the zero operator. (Remark: This result

does not depend on the diagonalizability of T .)

Solution.

(a) Let g(t) =
∑n

i=0 ait
i, then g(T ) =

∑n
i=0 aiT

i.

If T (x) = λx, then

g(T )(x) =

n∑
i=0

aiT
i(x) =

n∑
i=0

ai(λ
ix) = (

n∑
i=0

aiλ
i)x = g(λ)(x)

(b) T is diagonalizable, then there exists β a basis consisting of eignevectors of T .

Let β = {v1, ..., vn} and T (vi) = λivi. Then f(λi) = 0 since λi is the eigenvalue

of T .

By (a), one has f(T )(vi) = f(λi)vi = 0vi = 0 for i = 1, ..., n. Thus f(T ) = T0.

5. Let A ∈Mn×n(F ). Recall from §5.1 Q14 that A and At have the same characteristic

polynomial and hence share the same eigenvalues with the same multiplicities. For

any eigenvalue λ of A and At, let Eλ and E′λ denote the corresponding eigenspaces

for A and At, respectively.

(a) Show by way of example that for a given common eigenvalue, these two eigenspaces

need not be the same.

(b) Prove that for any eigenvalue λ, dim(Eλ) = dim(E′λ).

(c) Prove that if A is diagonalizable, then At is also diagonalizable.

Solution.

(a) Let A =

0 1

0 0

, then fA(t) = fAt(t) = t2. λ = 0 is the only eigenvalue of A

and At. The algebraic multiplicity µA(0) = µAt(0) = 2.

Eλ = N(A− 0I) = {(x, y) ∈ R2|y = 0} = span({(1, 0)})

E′λ = N(At − 0I) = {(x, y) ∈ R2|x = 0} = span({(0, 1)})

So Eλ 6= E′λ
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(b)

dim(Eλ) = dim(N(A− λI))

= n− rank(A− λI)

= n− rank((A− λI)t)

= dim(N(At − λI))

= dim(E′λ)

(c) If A is diagonalizable, there exists λ1, ...λr such that Eλ1 ⊕ ...Eλr = Fn. That

is, dim(Eλ1)+ ...+dim(Eλr) = n. By (b), dim(E′λ1)+ ...+dim(E′λr) = n. Then

E′λ1 ⊕ ...E
′
λr

= Fn and thus At is diagonalizable.
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