2023-24 MATH2048: Honours Linear Algebra II Homework 6 Answer

Due: 2023-10-30 (Monday) 23:59

For the following homework questions, please give reasons in your solutions. Scan your solutions and submit it via the Blackboard system before due date.

1. Let $V = P_1(\mathbb{R})$ and $W = \mathbb{R}^2$ with respective standard ordered bases β and γ . Define $T: V \to W$ by

$$T(p(x)) = (p(0) - 2p(1), p(0) + p'(0)),$$

where p'(x) is the derivative of p(x).

- (a) For $f \in W^*$ defined by f(a, b) = a 2b, compute $T^*(f)$.
- (b) Compute $[T]^{\gamma}_{\beta}$ and $[T^*]^{\beta^*}_{\gamma^*}$ independently.

Solution.

(a)

$$T^*(f)(p(x)) = f \circ T(p(x))$$

= $f(T(p(x)))$
= $f(p(0) - 2p(1), p(0) + p'(0))$
= $p(0) - 2p(1) - 2(p(0) + p'(0))$
= $-p(0) - 2p(1) - 2p'(0)$

(b) Let $\beta = \{1, x\}$ and $\gamma = \{e_1, e_2\}$. And $\beta^* = \{f_1, f_2\}, \gamma^* = \{g_1, g_2\}$ be the dual bases of β and γ .

$$\left[T\right]_{\beta}^{\gamma} = \begin{bmatrix} -1 & -2\\ 1 & 1 \end{bmatrix}$$

$$\begin{cases} f_1(1) = 1\\ f_1(x) = 0 \end{cases} \implies f_1(a + bx) = a, \begin{cases} f_2(1) = 0\\ f_2(x) = 1 \end{cases} \implies f_1(a + bx) = b\\ \\ g_1(e_1) = 1\\ g_1(e_2) = 0 \end{cases} \implies g_1((a, b)) = a, \begin{cases} g_2(e_1) = 0\\ g_2(e_2) = 1 \end{cases} \implies g_2((a, b)) = b\\ \\ g_2(e_2) = 1 \end{cases}$$

$$T^{*}(g_{1})(a + bx) = g_{1} \circ T(a + bx)$$

= $g_{1}((-a - 2b, a + b))$
= $-a - 2b$
= $-f_{1}(a + bx) - 2f_{2}(a + bx)$ for any $a + bx \in P_{1}(\mathbb{R})$

So
$$[T^*(g_1)]_{\beta^*} = \begin{pmatrix} -1 \\ -2 \end{pmatrix}$$

$$T^*(g_2)(a+bx) = g_2 \circ T(a+bx)$$

= $g_2((-a-2b,a+b))$
= $a+b$
= $f_1(a+bx) + f_2(a+bx)$ for any $a+bx \in P_1(\mathbb{R})$

So
$$[T^*(g_2)]_{\beta^*} = \begin{pmatrix} 1\\ 1 \end{pmatrix}$$

 $[T^*]_{\gamma^*}^{\beta^*} = \begin{bmatrix} -1 & 1\\ -2 & 1 \end{bmatrix}$

- 2. Let $V = P_n(F)$, and let c_0, c_1, \ldots, c_n be distinct scalars in F.
 - (a) For $0 \le i \le n$, define $f_i \in V^*$ by $f_i(p(x)) = p(c_i)$. Prove that $\{f_0, f_1, \ldots, f_n\}$ is a basis for V^* .
 - (b) Show that there exist unique polynomials $p_0(x), p_1(x), \ldots, p_n(x)$ such that $p_i(c_j) = \delta_{ij}$ for $0 \le i \le n$. (Hint: Lagrange Polynomials)
 - (c) For any scalars a_0, a_1, \ldots, a_n (not necessarily distinct), find the polynomial q(x) of degree at most n such that $q(c_i) = a_i$ for $0 \le i \le n$ and show that q(x) is unique.

Solution.

- (a) Consider $\sum_{i=0}^{n} a_i f_i = 0$. Let $p_i(x) = \prod_{j=0, j \neq i}^{n} (x c_j)$, then $p_i(c_j) = 0$ iff i = j. $\sum_{i=0}^{n} a_i f_i(p_j) = 0 \implies \sum_{i=0}^{n} a_i p_j(c_i) = 0 \implies a_i p_j(c_i) = 0 \implies a_j = 0$ Therefore $\{f_0, ..., f_n\}$ is linearly independent in V. Since $|\{f_0, ..., f_n\}| = n + 1 = dim(V), \{f_0, ..., f_n\}$ is a basis for V.
- (b) Let $\{\hat{p}_0, ..., \hat{p}_n\} \subset V^*$ be the dual basis of $\{f_0, ..., f_n\}$. Then $\delta_{ij} = \hat{p}_i(f_j) = f_j(p_i) = p_i(c_j)$. The Lagrange Polynomial $p_i(x) = \frac{\prod_{j=0, j \neq i}^n (x-c_j)}{\prod_{j=0, j \neq i}^n (c_i-c_j)}$ satisfies $p_i(c_j) = \delta_{ij}$. If $p_i(c_j) = q_i(c_j) = \delta_{ij}$ for some polynomial p_i and q_i , then $(p_i - q_i)(c_j) = 0$, $\forall j = 1, ..., n$. That means the polynomial $p_i - q_i$ has n + 1 distinct zeros. Thus $p_i - q_i = 0$. Therefore such $\{p_i\}_{i=0}^n$ is unique.
- (c) Since $\{p_0, ..., p_n\}$ is a basis for $P_n(F)$, for any $q \in P_n(F)$, q can be uniquely represented by $q(x) = \sum_{i=0}^n a_i p_i(x)$ and $q(c_i) = \sum_{j=0}^n a_j p_j(c_i) = \sum_{j=0}^n a_j \delta_{ij} = a_i$.
- 3. Let $A, B \in M_{n \times n}(\mathbb{C})$.
 - (a) Prove that if B is invertible, then there exists a scalar $c \in \mathbb{C}$ such that A + cB is not invertible. Hint: Examine det(A + cB).
 - (b) Find nonzero 2×2 matrices A and B such that both A and A + cB are invertible for all $c \in \mathbb{C}$.

Solution.

(a) det(A+cB) = det(B(B⁻¹A+cI)) = det(B) det(B⁻¹A+cI) = det(B)f_{B⁻¹A}(-c).
Since f_{B⁻¹A}(t), the characteristic polynomial of B⁻¹A, splits over C, there exists c ∈ C such that f_{B⁻¹A}(-c) = 0, which implies det(A + cB) = 0 and thus A + cB is not invertible.

(b)
$$A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} B = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$
 Then $\det(A + cB) = 1$ for all $c \in \mathbb{C}$

4. (a) Let T be a linear operator on a vector space V over the field F, and let g(t) be a polynomial with coefficients from F. Prove that if x is an eigenvector of T with corresponding eigenvalue λ, then g(T)(x) = g(λ)x. That is, x is an eigenvector of g(T) with corresponding eigenvalue g(λ).

(b) Use (a) to prove that if f(t) is the characteristic polynomial of a diagonalizable linear operator T, then $f(T) = T_0$, the zero operator. (Remark: This result does not depend on the diagonalizability of T.)

Solution.

(a) Let $g(t) = \sum_{i=0}^{n} a_i t^i$, then $g(T) = \sum_{i=0}^{n} a_i T^i$. If $T(x) = \lambda x$, then

$$g(T)(x) = \sum_{i=0}^{n} a_i T^i(x) = \sum_{i=0}^{n} a_i (\lambda^i x) = (\sum_{i=0}^{n} a_i \lambda^i) x = g(\lambda)(x)$$

(b) T is diagonalizable, then there exists β a basis consisting of eignevectors of T.
Let β = {v₁,...,v_n} and T(v_i) = λ_iv_i. Then f(λ_i) = 0 since λ_i is the eigenvalue of T.

By (a), one has
$$f(T)(v_i) = f(\lambda_i)v_i = 0$$
 for $i = 1, ..., n$. Thus $f(T) = T_0$.

- 5. Let $A \in M_{n \times n}(F)$. Recall from §5.1 Q14 that A and A^t have the same characteristic polynomial and hence share the same eigenvalues with the same multiplicities. For any eigenvalue λ of A and A^t , let E_{λ} and E'_{λ} denote the corresponding eigenspaces for A and A^t , respectively.
 - (a) Show by way of example that for a given common eigenvalue, these two eigenspaces need not be the same.
 - (b) Prove that for any eigenvalue λ , dim $(E_{\lambda}) = \dim(E'_{\lambda})$.
 - (c) Prove that if A is diagonalizable, then A^t is also diagonalizable.

Solution.

(a) Let
$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
, then $f_A(t) = f_{A^t}(t) = t^2$. $\lambda = 0$ is the only eigenvalue of A
and A^t . The algebraic multiplicity $\mu_A(0) = \mu_{A^t}(0) = 2$.
 $E_{\lambda} = N(A - 0I) = \{(x, y) \in \mathbb{R}^2 | y = 0\} = span(\{(1, 0)\})$
 $E'_{\lambda} = N(A^t - 0I) = \{(x, y) \in \mathbb{R}^2 | x = 0\} = span(\{(0, 1)\})$
So $E_{\lambda} \neq E'_{\lambda}$

$$\dim(E_{\lambda}) = \dim(N(A - \lambda I))$$
$$= n - rank(A - \lambda I)$$
$$= n - rank((A - \lambda I)^{t})$$
$$= \dim(N(A^{t} - \lambda I))$$
$$= \dim(E'_{\lambda})$$

(c) If A is diagonalizable, there exists $\lambda_1, ...\lambda_r$ such that $E_{\lambda_1} \oplus ...E_{\lambda_r} = F^n$. That is, $\dim(E_{\lambda_1}) + ... + \dim(E_{\lambda_r}) = n$. By (b), $\dim(E'_{\lambda_1}) + ... + \dim(E'_{\lambda_r}) = n$. Then $E'_{\lambda_1} \oplus ...E'_{\lambda_r} = F^n$ and thus A^t is diagonalizable.