2023-24 MATH2048: Honours Linear Algebra II

Homework 6 Answer

Due: 2023-10-30 (Monday) 23:59

For the following homework questions, please give reasons in your solutions.

Scan your solutions and submit it via the Blackboard system before due date.

1. Let V = Pi(R) and W = R? with respective standard ordered bases 3 and 7. Define
T:V —- W by

T(p(x)) = (p(0) — 2p(1),p(0) + p'(0)),

where p/(x) is the derivative of p(z).

(a) For f € W* defined by f(a,b) = a — 2b, compute T*(f).

(b) Compute [T]} and [T*]f* independently.
Solution.

(a)

(b) Let 8 = {1,2} and v = {e1,e2}. And B* = {f1, fo}, 7* = {91, 92} be the dual

bases of 5 and 7.



fi(l) =1 f2(1)=0

= fi(a+br) =a, = fila+bzx)="b
fi(x) =0 fa(z) =1
er) =1 e1) =0
gi(e1) (@) =a, ga(e1) (@) = b
g1(e2) =0 g2(e2) =1

T*(g1)(a +bx) = g1 o T(a + bx)
=qg((—a—2b,a+0))
=—a—2b

= —fila+bzx) — 2fs(a + bx) for any a + bz € P;(R)

T*(g2)(a + bz) = g0 T(a + bx)
= g2((—a — 2b,a + b))
=a-+b

= fi(a+ bz) + fa(a + bx) for any a + bx € P (R)
1
So [T*(g2)l3+ = <1>
- [1 1]
-2 1

2. Let V = P,(F), and let ¢y, cy,...,c, be distinct scalars in F.

(a) For 0 <i <mn, define f; € V* by fi(p(x)) = p(c;). Prove that {fo, f1,..., fn} is
a basis for V*.

(b) Show that there exist unique polynomials po(x), p1(z), ..., pn(x) such that p;(c;) =
d;; for 0 <4 < n. (Hint: Lagrange Polynomials)

(c) For any scalars ag, ay, ..., a, (not necessarily distinct), find the polynomial ¢(x)
of degree at most n such that ¢(¢;) = a; for 0 < ¢ < n and show that ¢(x) is

unique.



Solution.

(a)

Consider 377" ;a; fi = 0. Let pi(z) = [[}_ ;.;(z — ¢;), then pi(c;) = 0 iff i = j.
Yicoaifip;) =0 = Yl gaipi(ci) =0 = aip;j(ci) =0 = a; =0
Therefore { fo, ..., fn} is linearly independent in V.

Since [{ fo, ..., fu}| =n+1=dim(V), {fo, ..., fn} is a basis for V.

Let {po,...,pn} C V* be the dual basis of { fo, ..., fn}-

Then 6;; :ﬁi(fj) = fj(pi) = Pz‘(%)-

The Lagrange Polynomial p;(z) = M

j
j=0,ji(¢i—¢;)

satisfies p;(cj) = ;.

If pi(¢;) = qi(cj) = 04 for some polynomial p; and ¢;, then (p; — ¢;)(¢;) =
0,Vj = 1,...,n. That means the polynomial p; — ¢; has n + 1 distinct zeros.
Thus p; — ¢; = 0. Therefore such {p;}}, is unique.

Since {po,...,pn} is a basis for P,(F), for any ¢ € P,(F'), ¢ can be uniquely
represented by ¢(z) = Y I aipi(z) and q(e;) = 377 ajpj(ci) = D71 a0 =

a;.

3. Let A, B € Myyn(C).

(a)

(b)

Prove that if B is invertible, then there exists a scalar ¢ € C such that A + ¢B
is not invertible. Hint: Examine det(A + ¢B).

Find nonzero 2x2 matrices A and B such that both A and A-+¢B are invertible

for all ¢ € C.

Solution.

(a)

det(A+cB) = det(B(B~1A+cl)) = det(B) det(B~tA+cl) = det(B) fg-14(—c).
Since fp-14(t), the characteristic polynomial of B~!A, splits over C, there
exists ¢ € C such that fg-14(—c) =0, which implies det(A + ¢B) = 0 and thus
A+ ¢B is not invertible.

10 0

0
A= B = Then det(A +¢B) =1 for all c € C
01 1 0

Let T be a linear operator on a vector space V over the field F, and let g(t)
be a polynomial with coefficients from F'. Prove that if x is an eigenvector of
T with corresponding eigenvalue A, then ¢g(7T")(z) = g(A)x. That is, = is an

eigenvector of g(7T") with corresponding eigenvalue g(\).



(b) Use (a) to prove that if f(t) is the characteristic polynomial of a diagonalizable
linear operator 7', then f(7') = Ty, the zero operator. (Remark: This result

does not depend on the diagonalizability of T'.)

Solution.

(a) Let g(t) = Y1 o at, then g(T) = Y1 a;T".
If T(xz) = Az, then

n

g(T)(@) = 3 aTi(2) = Y ai(Na) = (3 aihi)a = g(N) (@)
=0 =0

i=0

(b) T is diagonalizable, then there exists 5 a basis consisting of eignevectors of T'.
Let 5 = {v1,...,v,} and T'(v;) = A\jv;. Then f(\;) = 0 since )\; is the eigenvalue
of T.

By (a), one has f(T')(v;) = f(Ai)vi = 0v; =0 for i = 1,...,n. Thus f(T) = Tp.

5. Let A € Myx,(F). Recall from §5.1 Q14 that A and A! have the same characteristic
polynomial and hence share the same eigenvalues with the same multiplicities. For
any eigenvalue A of A and A?, let E and EY denote the corresponding eigenspaces

for A and A!, respectively.

(a) Show by way of example that for a given common eigenvalue, these two eigenspaces
need not be the same.
(b) Prove that for any eigenvalue X, dim(E)) = dim(E}).

(c) Prove that if A is diagonalizable, then A! is also diagonalizable.

Solution.

0 1
(a) Let A = , then fa(t) = fa:(t) = t2. X\ = 0 is the only eigenvalue of A
00

and A!. The algebraic multiplicity p4(0) = pa:(0) = 2.

Ey = N(A4 - 0I) = {(z,) € B2y = 0} = span({(1,0)})

B}, = N(A! - 0I) = {(z,y) € R?[z = 0} = span({(0, 1)})
So E) # E\



dim(E,) = dim(N (4 — \I))
=n —rank(A — \I)
=n —rank((A — X))
= dim(N (At — \I))

= dim(E})

(c) If A is diagonalizable, there exists Ay, ...\, such that Ey\, @ ...E). = F". That
is, dim(Ey,) +... +dim(E),) = n. By (b), dim(E} )+... +dim(E} ) = n. Then
E\ @ ..E\, = F"and thus A" is diagonalizable.



